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EXPERIMENTAL TESTS OF CHIRALITY ALGEBRA 

R.B.  K I N G  

Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA 

Abstract 

Most chiral molecules can be dissected into a collection of ligands attached to an 
underlying skeleton. Application of permutation group theory and group representation 
theory to such a model can lead to chirality functions which can be used to approximate 
pseudoscalar measurements such as optical rotation or circular dichroism. Such chirality 
functions have been tested experimentally for the following skeletons: (1) The polarized 
triangle of phosphines and phosphine oxides; (2) the tetrahedron of methane derivatives; 
(3) the disphenoid of allene and 2, 2'-spirobiindane derivatives; (4) the polarized rectangle 
of [2, 2]-metacyclophanes; (5) the polarized pentagon of heterodisubstituted ferrocenes. 
The success of this method is fair to good for the polarized triangle, tetrahedron, and 
disphenoid skeletons but deteriorates rapidly for the polarized rectangle and polarized 
pentagon skeletons, in accord with the greater group-theoretical complexity of the latter 
skeletons. 

1. Introduction 

The symmetry operations in a molecular point group can be classified according 
to the minimum number of changed coordinates (table 1). A chiral molecule contains 
no symmetry operations having odd minimum numbers of changed coordinates such 

Table 1 

Types of symmetry operations in molecular point groups 

Minimum number of 
Symmetry operation changed coordinates 

E (identity) 0 
(7 (reflection plane) 1 
C~ (proper rotation axis) 2 
S,, (improper rotation axis or "rotation-reflection") ] 3 
i (= $2) (inversion center) J 

as reflections and improper rotations. Mirror images (enantiomers) of chiral molecules 
are not superimposable. Chirality may thus be regarded as the differentiation of a 
molecule from its mirror image. 
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The experimental observation of molecular chirality arises from pseudoscalar 
measurements, which have the following properties: 

(1) They depend upon the molecule but not its orientation in space. 

(2) They have identical absolute values but opposite signs for mirror images, i.e. 
the two enantiomers of a chiral molecule. 

Chemically significant pseudoscalar measurements include the rotation of plane 
polarized light (optical rotation) and circular dichroism. 

This paper summarizes some experimental tests of algebraic approaches for 
modelling molecular chirality and associated phenomena. Such algebraic methods 
can provide the following information: 

(1) 

(2) 

Systematics of molecular skeletons and ligand partitions leading to chiral 
systems. 

The determination of mathematical functions (chirality functions) by which 
the magnitude and sign of a pseudoscalar property (the dependent variable) 
can be calculated for a given skeleton using parameters which depend only 
upon the ligands located at specific sites on the skeleton (the independent 
variables). 

The experimental tests of chirality algebra involve evaluation of mathematically 
derived chirality functions as approximations to actual experimental pseudoscalar 
measurements. 

Although rudimentary ideas relating to chirality functions can be traced as far 
back as 1890 [1,2], the modern study of chirality algebra had its genesis in the 
stereochemical analogy model by Ruch and Ugi [3,4]. Increasingly sophisticated 
mathematical methods, based largely on the induction of representations of finite 
groups, were then developed for the determination of chirality functions [5-7].  
Overviews of various aspects of chirality algebra were subsequently presented by 
Ruch [8], and then in much greater mathematical detail by Mead [9]. The present 
author has recently reviewed chirality algebra [10], as well as the more specific area 
of chirality polynomials [11]. The reader is referred to these articles and references 
cited therein for further details. 

2. Framework groups 

Consider a molecule of the type ML n, in which M is a metal or other central 
atom and the n ligands L may or may not be equivalent but cannot be chiral. Removal 
of the n ligands L from MLn leads to the skeleton. The symmetry of the skeleton 
is regarded as that of the framework group [12] based on the location of the n 
ligands L. In this connection, framework groups provide a method for specifying 
the symmetry of bodies containing a finite number of particles. Such framework 



R.B. King, Experimental tests of chirality algebra 71 

groups are described by the SchOenflies symbol [13] of  the underlying point group, 
followed by an indication of the location of each of the particles in terms of  
subspaces relating to the symmetry elements of the underlying point group. Such 
subspaces can be classified by their dimensionalities, as follows: 

O-dimensional (O): a central point (e.g. a center of inversion (i) or intersection 
of a rotation axis with another rotation axis or a perpendicular plane of  
symmetry); 

l-dimensional (Cn): a rotation axis; 

2-dimensional (t:rn, tr v, cra): a reflection plane; 

3-dimensional (X): the remaining part of full three-dimensional space external 
to any of the symmetry operations. 

These dimensionalities have an "inverse" or "codimensional" relationship to the 
minimum number of changed coordinates in the corresponding symmetry operations 
as presented in table 1. The location of any given particle in the framework group 
is specified in terms of the subspace of the lowest possible dimensionality. The 
preference order is thus O > C,, > cr > X. 

Framework groups can be classified into the following four types [14]: 

(1) Linear: all sites are located in a straight line (a one-dimensional subspace 
of three-dimensional space). 

(2) Planar: non-linear framework groups in which all sites are located in a (flat) 
plane (a two-dimensional subspace of three-dimensional space). 

(3) Achiral: non-planar framework groups in which the point group contains at 
least one improper rotation S,, (n > 1), where S 1 = cr and S 2 = i. 

(4) Chiral: non-planar framework groups in which the point group contains no 
improper rotations. 

Chiral framework groups are of no interest in chirality algebra since they are 
always chiral even if all ligands are the same. Linear framework groups are 
also of no interest in chirality algebra since they are never chiral even if all ligands 
are different. Planar framework groups can be made chiral by a process called 
polarization [14], which destroys the symmetry of the plane containing all of the 
sites. A chemical example of polarization is the polyhapto [15] complexation of a 
planar aromatic hydrocarbon (e.g. benzene) with a transition metal to destroy the 
C~h ring plane as a symmetry element. 

Framework groups may also be classified by the parities of their permutations 
or the locations of their reflection planes. Thus, the parity of a site permutation or 
symmetry element is odd or even, depending on whether the total number of  cycles 
of even length is odd or even, respectively. A framework group is called an ordinary 
framework group when its symmetry elements are of odd parity if and only if they 
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Fig, 1. Chemically significant transitive skeletons having six or fewer sites, 

correspond to an improper  rotation axis S,, (n > 1) including S 1 = cr and S 2 m__ i. If  
this is not the case, the framework group is called extraordinary. The reflection 
planes in framework groups can be classified into two types: separating planes and 
non-separating planes. A separating plane in a non-planar achiral framework group 
having n sites contains exactly n -  2 of these sites. Conversely, a reflection plane 
containing less than n - 2 sites in a skeleton having n sites is a non-separating plane. 
Chiral molecules with underlying achiral framework groups in which all reflection 
planes are separating planes can be classified into left-handed and right-handed 
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enantiomers, with enantiomers of the same handedness being called "homochiral" 
[16,17]. Such achiral skeletons have been called "category a" or shoe-like by 
Ruch [16, 17], since left and right shoes can readily be distinguished regardless of 
their size, shape, or color. However, chiral molecules with underlying achiral framework 
groups having one or more non-separating planes have been called "category b" or 
potato-like by Ruch [16, 17], since even though chiral, which member of an enantiomeric 
pair is "left-handed" and which is "right-handed" cannot be distinguished, as is the 
case for potatoes. In general, C 4, C 5, C 6, S 3, and S 6 rotation axes lead to framework 
groups which are extraordinary and potato-like. 

The symmetry of a framework group or the corresponding skeleton may be 
related to its transitivity. Thus, a framework group having aH sites equivalent is 
called a transitive framework group; otherwise, the framework group is called 
intransitive. A set of equivalent sites is called an orbit; the number of sites in an 
orbit is called the length of the orbit. A transitive framework group or skeleton thus 
has only one orbit consisting of all its sites. Transitive skeletons play a fundamental 
role in chirality algebra. Non-trivial chemically significant transitive skeletons having 
six or fewer sites are depicted in fig. 1. 

3. Group  representat ion theory 

The areas of group representation theory relevant to chirality algebra consider 
the effect of the skeletal distribution of ligands on the actual molecular symmetry. 

{ ~ b l , . v b 2  . . a b k ,  The ligand partition can be depicted by a symbol of the type ~'1,,2 • 
am > am + 1, in which b~ refers to the number of sets of a k identical ligands. Thus, 
the symbol (n) refers to an M L  n molecule in which all n ligands are equivalent. In 
addition, the ligand partition of an M L  n molecule can also be depicted by a collection 
of boxes called a Young diagram, particularly as relating to representations and 
conjugacy classes of the corresponding symmetric group P,, [18]. Such Young diagrams 
have the following properties: 

(1) The rows of boxes represent identical ligands. 

(2) The top row is always the longest row and the lengths of the rows decrease 
monotonically from top to bottom. 

(3) The left column is always the longest column and the lengths of the columns 
decrease monotonically from left to right. 

Such Young diagrams can be characterized by the following three parameters. 

(1) Order  (o): This represents the maximum number of identical ligands in 
the ligand partition and is simply the length of the top row. The order also corresponds 
to the number of columns in the Young diagram. 
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(2) Index (i): This represents the number of different ligands in the ligand 
partition and is simply the length of the left column. The index also corresponds 
to the number of rows in the Young diagram. 

(3) Degree (g): This provides a basis for ordering Young diagrams and 
represents the minimum degree of the chirality polynomial for the corresponding 
ligand partition, which does not vanish identically. The degree of a Young diagram 
can be calculated by the following equation, in which c k represents the length of 
column k: 

k=orde r  
1 

g = "~ ~ ,  Ck(Ck-- 1/. (11 
k = l  

In general, Young diagrams having high degrees depict relatively unsymmetrical 
ligand partitions, whereas Young diagrams having low degrees depict relatively 
symmetrical ligand partitions. The Young diagrams for the possible ligand partitions 
in an ML 4 species are depicted in table 2, together with their order, indices, and 
degrees. 

Table 2 
Young diagrams and ligand partitions for four ligand sites 

Chirality 
Ligand Young Complex Chirality Chirality polynomial 
partition diagram type order (o) index (i) degree (g) 

(4) I I I I I  MA, 4 1 0 

(31) ~ ]  MA 3 B 3 2 1 

(22 ) ~ ]  MA2B z 2 2 2 

(212 ) ~ MA2BC 2 3 3 

(14 ) ~ MABCD 1 4 6 
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An important objective in chirality algebra is the  determination of chiral 
ligand partitions, namely a ligand partition of lowest degree g (minimum asymmetry) 
necessary to destroy all improper rotations Sn (n > 1 including S I = a and S z = i) 
in an achiral skeleton to give a chiral system. The following group-theoretical 
algorithm [9-11, 14] can be used to determine the chiral ligand partitions for a 
skeleton with n sites having point group G: 

(1) The characters for G subduced by each irreducible representation F, of 
the symmetric group P, are determined from the character tables of Pn by copying 
down the characters of each irreducible representation F~ for the operations of Pn 
also in G. 

(2) The characters of the "chiral representation" F. of G are determined by 
using + 1 for proper rotations (E, Cn) and - 1 for the improper rotations (or, i, Sn). 

(3) Standard group-theoretical methods based on orthogonality relation- 
ships [13, 19] are used to determine which representations F~ of Pn when restricted 
solely to operations in G contain the chiral representation F. of G. Note that 
representations which are irreducible in systems having full Pn symmetry are no 
longer necessarily irreducible when the symmetry is reduced to G. 

(4) The Young diagrams corresponding to these irreducible representations 
of P, indicate the chiral ligand partitions for a skeleton having point group G. 

Reduction of the symmetry of a skeleton with n sites from G to a smaller (less 
symmetrical) point group H has the following effects: 

(1) The number of irreducible representations F, of Pn containing the chiral 
representation F. will be larger when restricted to H than when restricted 
to G. 

(2) If H is a normal subgroup [201 of G, every irreducible representation F~ of 
Pn which contains F, when restricted to G will also contain F. when restricted 
to H. 

(3) The degree of the lowest degree chiral ligand partition will be lower for H 
than for G. This relates to the obvious fact that a less symmetrical skeleton 
may require fewer different ligands to become chiral. 

The chiral representation F, of G has characters of -1  for the improper rotations 
and + 1 for the proper rotations. In an ordinary framework group, the chiral 
representation has characters of + 1 for the even site permutations and - 1 for the 
odd site permutations, but such is no longer true for extraordinary framework 
groups. In any symmetric group, the representation (1 n) corresponding to all ligands 
different (i.e. n different ligand types) has characters of + 1 for the even permutations 
and -1  for the odd permutations. Therefore, a framework group with n sites has 
(1 n) as a chiral ligand partition if and only if it is ordinary. 
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4. Chirality functions and their polynomial approximations 

Consider molecules of the type M L  n, in which M is a metal or other central 
atom and the n ligands L may or may not be equivalent. Now consider the problem 
of  approximating a pseudoscalar measurement V with a function in n variables, i.e. 

gt = f (2 l ,  'L2 . . . . .  )~n) = f()l.), where ~1. E A n. (2) 

In eq. (2), the n independent variables Aq, 2~ . . . . .  A. n or the n coordinates of  the 
vector A. correspond to parameters associated with the ligands at sites 1, 2 . . . . .  n, 
respectively, which depend only upon the ligand, the skeleton, and the pseudoscalar 
measurement. In principle, such ligand parameters can be obtained by fitting a 
series of pseudoscalar measurements of a given type on molecules having the same 
skeleton and a restricted set of ligands using appropriate chirality functions. The 
permutations of the symmetric group Pn interchange the variables ,~1, ~ . . . . .  ~, 
with the following results if f(& 1, ~ . . . . .  &,) is a valid chirality function: 

(1) A proper rotation of the skeletal point group leaves unchanged both the 
absolute value and sign of f .  

(2) An improper rotation of the skeletal point group changes the sign o f f  but 
leaves unchanged its absolute value. 

(3) Any permutation in ,~ not in the skeletal point group may have any effect 
on the value o f f .  

We now consider the problem of finding the simplest type of function for a 
given skeleton and chiral ligand partition having the transformation properties required 
for a chirality function. Such a function turns out to be a polynomial X(s  1, s z . . . . .  s,,) 
of the same degree as that of the corresponding ligand partition. If a skeleton has 
several chiral ligand partitions of degrees g~, g2 . . . . .  ge' a sum of chirality polynomials 
of degrees gl,  g2 . . . . .  gp with a separate set of ligand parameters for each polynomial 
may be required to describe all chirality phenomena for the skeleton in question. 
Such a sum of chirality polynomials is a qualitatively complete chirality poly- 
nomial [7-11]  and the individual chirality polynomials making up the sum may be 
regarded as components of the qualitatively complete chirality polynomial. 

The chirality polynomial components X(s  1, s 2 . . . . .  s , )  = X(s )  so defined may 
be regarded as functions of a vector s in an n-dimensional parameter space S" with 
a smooth map M:A n---> S n between the two ligand parameter spaces if X(s )  is a 
sufficiently close approximation to f(~) .  The lowest degree chirality polynomial 
X(s )  may be regarded as an initial term in a Taylor series approximation of a more 
accurate chirality function F(s)  of the same vector s in the same parameter space. 
The accuracy of the approximation ofF(s)  by its first term X(s )  will naturally depend 
upon the skeleton and the pseudoscalar property, and cannot be predicted by theory 
alone. Thus, chirality polynomials are not required to work. However, they may 
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work, so the investigation of applications of chirality polynomials to model pseudoscalar 
properties is a valid pursuit. 

An individual polynomial component X(s 1, s 2 . . . . .  sn) of a qualitatively complete 
chirality function is homogeneous and depends only on the s-differences s i -  s k 
(i, k = 1, 2 . . . . .  n) in all important cases. It has the general form: 

X ( s l  ,sz . . . . .  s . )  = 
kN [GI 

E a~Pk(Sl'S2 . . . . .  Sn), 
k = l  

( 3 )  

where [ G [ is the number of operations in the skeletal point group G and the pk's 
are homogeneous polynomials which are also functions of s-differences and are defined 
by the required transformation properties. For a shoe-like skeleton, the chirality 
polynomial is a simple product of g s-differences, i.e. 

X ( s l , s 2  . . . . .  s . )  : 1 - I ( s i - s k ) ,  (4) 

where the indices i and k for each factor correspond to a pair of sites outside a given 
reflection plane. The degree g of the lowest degree chirality polynomial for a shoe- 
like skeleton thus corresponds to the number of reflection planes, all of which are 
necessarily separating planes in the shoe-like skeleton. The chirality polynomials 
for potato-like skeletons do not have the simple form of eq. (4), since they contain 
sums as well as products of differences of ligand parameters. Also, the degrees of 
the lowest degree chirality polynomials for potato-like skeletons are less than the 
total number of reflection planes. Determination of the chirality polynomials for 
potato-like skeletons requires a group-theory derived algorithm based on projection 
operators, which is described in detail elsewhere [7,9-11, 14]. The chirality polynomial 
for an intransitive framework group is the product of the chirality polynomials for 
its individual orbits. 

5. Experimental  tests of chirality algebra 

The following two general approaches can be used for experimental tests of 
chirality algebra: 

(1) First approximation (chirality polynomials): Pseudoscalar measurements 
of a given type (e.g. optical rotation at a specific wavelength or circular dichroism) 
on molecules having a given skeleton and a limited set of different ligands are used 
to determine parameters for each ligand in the set to use in chirality polynomials 
obtained by the standard group-theory derived algorithm discussed elsewhere 
[7 ,9-11,14] .  The self-consistency of the ligand parameters found by this method 
is a measure of the success of this approximation. 

(2) Second approximation: Pseudoscalar measurements of a given type are 
made for a specially designed set of chiral molecules having a given skeleton and 



78 R.B. King, Experimental tests of chirality algebra 

with distributions of ligands chosen from a set not much larger than the number of 
sites so that the sums of any functionsf(;t 1 . . . . .  )t,,,) meeting the necessary minimal 
criteria for valid chirality functions is required mathematically to be identical to 
zero. The deviation from zero of the sum of experimentally determined pseudoscalar 
properties for this set of chiral molecules is then a measure of the errors arising 
from this approach. 

The first approximation requires a much larger set of data than the second 
approximation for a given skeleton in order to check the accuracy of the approximation 
through determination of a sufficiently large set of self-consistent ligand parameters. 
However, the first approximation leads to chirality polynomials and sets of ligand 
parameters which can be used to calculate the same pseudoscalar property for 
unknown molecules having the same skeleton and ligands chosen from the set for 
which ligand parameters have been obtained. The second approximation, unlike the 
first approximation, does not assume a polynomial form for the chirality function 
and therefore may work in some cases where the first approximation fails. 

The methods of chirality algebra have been tested for the following skeletons: 

(1) Polarized triangle 

The simplest non-trivial skeleton which has been tested experimentally is the 
C3v polarized triangle. The lowest degree chirality polynomial for this skeleton has 
the form 

x(c3 ) = (s3 - sz)(s3 - s l  )(s2 - s l ) ,  (5) 

corresponding to the (13) chiral ligand partition. Note the degree 3 chirality polynomial, 
with each factor corresponding to one of the separating planes of the shoe-like 
polarized triangle in accord with the general eq. (4). 

Richter [21] has studied the molar rotations of optically active phosphines 
and phosphine oxides, which have the polarized triangle skeleton. Distribution of 
four different ligands (a, b, c, d) among the three skeletal sites can lead to a quadruple 
of the following type (X = O or lone pair): 

x 

c r ' / ~ c  a " ' / ~  b a ' / J " ~  b ' / " ~  

la Ib lc Id 

The sum of the molar rotations of the four members of such a quadruple is predicted 
to be identically zero for any chirality function, either polynomial or otherwise, 
with the transformation properties required by chirality algebra. Of the 7 quadruples 
of type 1 above obtained by Richter [21] for the 7 optically active phosphines and 
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the 16 optically active phosphine oxides, 5 had zero sums of molar rotations within 
a 90% confidence limit, whereas the sums of the molar rotations of the 2 remaining 
quadruples deviated significantly from zero. A satisfactory set of ligand parameters 
for the degree 3 chirality polynomial X(13) in eq. (5) could not be obtained from 
the available data. 

(2) Tetrahedron 

The lowest degree chirality polynomial for the T d (regular tetrahedron) has 
the form: 

X(Ta) = (s 4 - $ 3 ) ( s  4 - S2)(S 4 - Sl)(S 3 - s2)(S 3 - Sl)(S 2 - S l )  , (6) 

corresponding to the (14) chiral ligand partition. Note the degree 6 chirality polynomial 
with each factor corresponding to one of the separating planes of the shoe-like 
tetrahedron in accord with the general eq. (4). In the case of methane derivatives 
based on the tetrehedron skeleton, distribution of five different ligands (a, b, c, d, e) 
among the 4 skeletal sites can lead to a quintuple of the following type: 

d d d d • 
I 

o-"'f \b  o"" \ .  o-'" \ o  • 
cl 

IIa  IIb H c  IId IIe  

The sum of the values for a given pseudoscalar property of the five members of 
such a quintuple is predicted to be identically zero for any chirality function meeting 
the minimum criteria required by chirality algebra. Studies on the optical rotations 
of 13 such quintuples obtained from 54 methane derivatives of known absolute 
configurations [22] indicate approximate zero sums of the five molar rotations of 
each quintuple in most cases. Significant deviations arise only in the cases of 
hydrogen bonding ligand pairs (e.g. NH2/CH2OH, NHCHO/CH2OH, NH2/COzH), 
bulky ligands (e.g. CH2OSi(CH3)3), and derivatives containing the ligand N=CHC6H 5 
having significant absorption in the Na D visible region where the optical activity 
measurements were performed. Meaningful ligand parameters for the degree 6 
chirality polynomial X(14) in eq. (6) were obtained for the ligands H, CH 3, C2H 5, 
CH2OH, NH~C1-, NH2CH~CI-, N(CH3) 2, NH(CH3)~CI-, and NHCH 3. 

(3) Disphenoid 

The four-site D2d disphenoid skeleton is found in both allene and 2, 2'-spiro- 
biindane derivatives. This skeleton has two chiral ligand partitions, namely the 
degree 2 (22) partition as well as the degree 6 (14) partition corresponding to the 
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single chiral ligand partition of the tetrahedron discussed above. The lowest degree 
qualitatively complete chirality polynomial for the disphenoid skeleton thus has two 
components leading to the equation 

X(D2d) = X(22) + X(14), (7) 

in which X(22) is the degree 2 polynomial 

X(22) = (t 4 - t2)(t 3 - tl) (8) 

and X(14) is the degree 6 polynomial of eq. (6). However, the X(14) component vanishes 
identically for chiral clisphenoids having (212) and (22) ligand partitions so that in 
these cases, only the degree 2 component X(22) in eq. (8) needs to be considered. 

Ruch, Runge, and Kresze [23] have calculated a set of self-consistent ligand 
parameters for H, C~H 5, CO2H, CH3, and C2H 5 in allenes from optical rotation data 
on phenylallene carboxylic acid derivatives. Such derivatives having two identical 
ligands, namely derivatives with the (212) ligand partition, were used so that the 
degree 6 X(14) component (eq. (6)) vanishes identically and thus could be neglected. 
However, the same set of ligand parameters could also be used to estimate the 
optical rotation in allenes having four different substituents (i.e. those with the (14) 
ligand partition) indicating that X(14) in eq. (7) is negligible relative to X(22) for 
this system. Difficulties in obtaining extensive series of chiral allene derivatives of 
high optical purity limited the scope of this study. 

Neudeck, Richter, and SchlOgl [24] have made an extensive study of the 
molar rotations of approximately 100 derivatives of the 2, 2'-spirobiindane skeleton 

b d 

III 

which, like allene, has the four sites and D2d symmetry of the disphenoid so that 
the same chirality functions can be used. However, extensive series of chiral 2, 2'- 
spirobiindanes of known optical purity are more readily available than such series 
of the chiral allenes discussed above. Molar rotation data on 5, 5'-disubstituted 2, 2'- 
spirobiindanes (III) having the (212) ligand partition were used to calculate self- 
consistent ligand parameters for the H, CH 3, C2H s, CH2OH, CHO, CH3CO, CO2H, 
CHzCH 3, CN, and OCH3 ligands in the degree 2 X(22) component (eq. (8)); for such 
derivatives, the degree 6 X(14) component (eq. (6)) vanishes identically and thus 
can be neglected. The magnitude of the degree 6 X(14) component (eq. (6)), which 
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does not vanish identically for 5, 5', 6-trisubstitued 2, 2'-spirobiindanes having the 
(14) ligand partition, can be estimated from the sums of the molar rotations of 
isomer triples schematically represented as 

b ~ c  d d - -  c c - -  b 

IVa IVb IVc 

For a given isomer triple (IV), the degree 2 X(22) component (eq. (8)) vanishes 
identically so that the deviation of this sum from zero represents exclusively the 
degree 6 X(I 4) component (eq. (6)). Analysis of optical rotation data on such an 
isomer triple (IV), where b = CH 3, c = C2H s, and d = COzCH 3, suggests that the 
degree 6 X(14) chirality polynomial is responsible for about 25% of the molar 
rotation, i.e. relatively small but far from negligible. 

(4) Polarized rectangle 

The four-site C2, , polarized rectangle skeleton is theoretically significant since 
it is the simplest potato-like skeleton having more than one chiral ligand partition. 
The C2h [2, 2]-metacyclophane skeleton (V) is permutationally equivalent to the C2,, 

a b 

d c 

v 

polarized rectangle so that the same chirality functions can be used. Thus, the 
lowest degree qualitatively complete chirality polynomial for the C2~, polarized rectangle, 
which is also applicable to the C2h [2, 2]-metacyclophane skeleton, has the form 

X(C2v) = X(31) + X(212), (9) 

in which 

X(31) = s I - s 2 - -  S 3 + S 4 (10) 
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and 

X(212) = (t 4 - tl)(t 3 - t2) ( t  a - t 3 - t 2 + tl), (ll) 

where sites 1, 2, 3, 4 are labelled a, b, c, d, respectively, in structure V. For 
4-monosubstituted derivatives ( a s H )  and 4, 14-homodisubstituted derivatives 
(a = d ,  H), the degree 3 component X(212) (eq. (11)) of the qualitatively complete 
chirality polynomial (eq. (9)) vanishes identically, so that the resulting qualitatively 
complete chirality polynomial is simply the linear "quadrant rule" of eq. (10). 

Keller, Krieger, Langer, Lehner, and Derringer have made detailed studies 
of the molar rotations [25] and circular dichroism [26] of 30 monosubstituted and 
disubstituted [2, 2]-metacyclophane derivatives. The double values predicted by eq. 
(10) for the molar rotations and circular dichroisms of the 4, 14-homodisubstituted 
derivatives relative to the corresponding monosubstituted derivatives are found for 
only a few of these cases, indicating the insufficiency of this simple linear 
approximation. This observation, as well as the observation of major discrepancies 
in the calculated ligand parameter for bromine from optical rotation measurements 
on the five 4, 12-heterodisubstituted derivatives a = c = H, d = Br, and b = CO2H, 
CO~, C02CH 3, CONH 2, CN (structure V), suggest major difficulties in applying the 
methods of chirality algebra to the [2, 2]-metacyclophane derivatives having the 
polarized rectangle skeleton. 

(5) P o l a r i z e d  p e n t a g o n  

Another potato-like skeleton which has been studied experimentally is the 
Csv polarized pentagon. The lowest degree chirality polynomials for this skeleton 
have the forms [14] 

X ( C 5 v  ) = ( s  5 - S l )  3 + (s  1 - $2) 3 + (s  2 - $3) 3 

+ (s3 - s4) 3 + (s4 - s s )  3, (12) 

X ( C 5 v  ) '  = ( s  5, - $2,) 3 + ( s  1 , -  $3,) 3 + ( s  2 , -  $4,) 3 

+ ( s 3 , -  ss ,)  3 + ( s 4 , -  s l , )  (12') 

corresponding to the 1, 2-heterodisubstituted and 1, 3-heterodisubstituted isomers, 
respectively, of the (312) chiral ligand partition. Note that the degrees of these 
polynomials are only 3, even though a polarized pentagon has 5 symmetry planes 
(o'v). This is a good example of how the degree of the lowest degree chirality 
polynomial for a potato-like skeleton is less than the number of symmetry planes. 

The polarized pentagon skeleton can be used to study chiral heterodisubstituted 
ferrocenes of the following types: 



R.B. King, Experimental tests of chirality algebra 83 

R 

- - -  ~ r  '~R 
Fe Fe 

VI I z VI13 

In cases where three of the five skeletal sites are hydrogen atoms assigned to the 
ligand parameter of zero as a reference point, the degree 3 chirality polynomial for 
the polarized pentagon in eq. (12) reduces to 

2 X(311) = sa s~ - s a S b ,  (13) 

in which a = 1 and b = 2 for the 1, 2-heterodisubstituted derivative VI12 and 
a = 1 and b = 3 for the 1,3-hetcrodisubstituted derivative VI13. However, attempted 
application of eq. (13) to 17 heterodisubstituted ferrocene derivatives by Rapi6, SchRigl, 
and Steinitz [27] failed to give sets of ligand parameters that could reproduce the 
observed molar rotations in eq. (13) without major discrepancies. This difficulty 
was suggested to arise from the proximity of the 589 nm wavelength of the light 
used for the optical rotation measurements to the positions of the longest wave- 
length maxima in the 540-440 nm range in the electronic spectra, so that the optical 
rotation measurements no longer fall in the transparent region required for the semi- 
empirical equations of chirality algebra to be valid. 

6. Summary  

The success of functions derived from chirality algebra in approximating 
experimental pseudoscalar measurements depends upon the complexity of the skeleton, 
particularly the numbers of sites and chiral ligand partitions. Thus, chirality functions 
provide fair to good approximations of optical rotation data for chiral derivatives 
of simple shoe-like skeletons, such as the polarized triangle of phosphines and 
phosphine oxides, the tetrahedron of methane derivatives, and the disphenoids of 
allene and 2, 2'-spirobiindane derivatives. However, approximations provided by 
chirality algebra deteriorate rapidly in chiral derivatives of more complicated skeletons 
or even relatively simple potato-like skeletons such as the polarized rectangle of 
[2, 2]-metacyclophanes or the polarized pentagon of heterodisubstituted ferrocenes. 
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